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Ultimate Properties – What Are They? 

 Property that can be used to characterize or rank a 
material at the time of rupture 
 Attempt to rank material according to their propensity to 

rupture when loaded 
 Loading may be caused by applied stress, strain 
Mechanically or thermally induced 

 Wide range from “fundamental”  to empirical 
 Used in research as well as “index” properties for 

specification use 
 Review of literature shows all obey time-temperature 

superposition 
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Ultimate Property Tests – Some 
Examples 

 Strength 
 Not  fundamental property 
 Value depends upon specimen size and configuration 
 Easy to measure 

 Fracture Properties 
 Properties independent of specimen size and configuration 
Difficult to measure – require viscoelastic characterization 

 Energy to Failure – Cohesive energy to fracture 
 Not fundamental property 
 Value depends upon size and configuration 
 Easy to measure 
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Theme of Today’s Presentation 

 Ultimate properties depend upon test temperature and 
rate of loading 
 For specification purposes an ultimate property must be 

determined at the use temperature 
 Specifying and ultimate property a single temperature for 

all binder grades will give misleading results 
 Ultimate properties obey time-temperature equivalency 
 Linear viscoelastic time-temperature shift functions also 

define time-temperature dependency of ultimate 
properties 
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 Linear visco elastic parameters – test conditions 
Measurements at small strain areas 
 BBR, DSR measurements 
 Used to generate numerical time-temperature algorithm 

and material dependent parameters 
Note: Literature for a wide range of materials shows that 
both linear, non-linear, and empirical index properties obey 
time-temperature superposition 

Stiffness - Linear visco-elastic parameters 
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Ultimate Properties – Test Parameters 

 What is an ultimate property? 
 Stress/strain at break 
 Energy 
 Fracture property 
 Etc. 

 Objective of today’s presentation ………………….. 
 To illustrate how rheology can be used as a descriptive tool 

for ultimate properties 
 The demonstrate that an understanding of rheology is 

necessary to properly interpret and use ultimate properties 
 3 major items to be considered 
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Issue 1: Strength versus temperature  

 Historical Perspective 
 Wide variety of research where strength is normalized 

with respect to temperature 
Huekelom (AAPT 1966) essential reading 
 Ferry, Viscoelastic Properties of Polymers, 3rd Edition 
 Strategic Research Program DTT Test, SHRP A-369 (1994) 
 Polymers in non-asphalt literature, extensive literature  
Mixtures, FENIX test, Constr. and Bldg. Materials, (2012), 

pp 372-380.  
 

Slide -7- 



 Similar results for 
polymers 

 Example: 
 Styrene-butadiene 

rubber 
 Tensile strain 
Data is shifted to a 

reduced strain rate 
that captures both 
time and 
temperature 

Ferry’s Book (T. Smith data) 
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 Styrene-butadiene 
rubber 

 Tensile strength 
Data is shifted to 

a reduced strain 
rate that captures 
both time and 
temperature 

Ferry’s Book (T. Smith data) 
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Heukelom (1966) 

Stiffness Modulus of Bitumen, kg/cm2 
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binder stiffness 
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presented as 
master curve; Sb 
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This location 
equates to 
G*≈15MPa 

Hukelom, AAPT, vol 35, p 358, 
“Observations on the rheology and 

fracture of bitumens and asphalt 
mixtures” 
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 Extended 
testing to 
mixtures with 
same result 

 Done for 8-mix 
types 

Heukelom (1966) 
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SHRP A-369, Anderson et. al (1994) 

 Failure master curves of stress, 
strain and energy for  
conventional binders 

 Functional form for energy 

12 

Note – reduced time – not adjusted to stiffness 



SHRP A-369, Anderson et. al (1994) 

 Also looked at  
SECANT modulus 
at failure from  
DTT test 

 Secant modulus  
can be  
considered as  
a “binder  
stiffness” 

 Produces single  
curve for all binders tested during SHRP 2A Project 
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 Stiffness important to describe strength, strain and 
properties at break 
 Could use other parameters that include effect of time 

and temperature 
 Stiffness is conceptually easy to understand since we 

use it as a specification parameter 
 Could use S(t), G*, E(t), etc. 

 Properties are both a function of loading rate and 
temperature! 
 Applies to range of visco-elastic materials, bitumen, 

asphalt mixes, rubber, SBS, others, etc. 
 All practical materials going into HMA! 

Summary - Item 1 
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 Fatigue and fracture will exhibit a brittle to instability 
flow (ductile) transition! 

Item 2 - Brittle to instability flow (ductile) 
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 Stiffness can be used to define the transition between 
“ductile” and “brittle” failure 
 Not a single stiffness value bit range 
 Perhaps better said between brittle and brittle-ductile 

behavior 
 Failure mechanism changes as pass through transition 
 “True” fatigue behavior with crack propagation in 

traditional sense occurs below this transition 
 Crack formation by viscous flow above transition   

 Definition of brittle and definition via yield stress 
associated presence controversial at least! 

Item 2 
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Typical Stress-Strain Curves 
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At test conditions 
used in DTT 
approximately 
equal to 300 MPa 
in BBR at 60s 

 

Linear VE – 
Not nonlinear 

Linear VE limit 



Observations from DSR “Fatigue” Test 

 Evolution of failure in LAS test 
 Observe flow above room temperature 
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Anderson, Marasteanu, Planche, Martin and Gauthier - 
Evaluation of Fatigue Criteria for Asphalt Binders – TRB 2001 
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 Range in stiffness where fatigue cracking and instability 
flow dominate 
 
 
 
 
 

 Note that values are in same range as presented above 
for strength 
 Stiffness normalizes the effect of temperature and loading 

rate   
 
 
 
 
 
 

Stiffness range where instability flow 
dominates 

          
 

Binder Fatigue 
cracking 

Instability 
flow 

Unmodified 28 to 55 MPa  5 to 18 MPa 
SB crosslinked 15 to 45 MPa  5 to 10 MPa 
EVA modified 13 to 45 MPa  5 to 9 MPa 
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Item 3 

 Importance of loading speed on temperature window 
 Temperature window depends upon speed of loading 
 Example demonstrated with Vialit Cohesion Test 
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Example of a cohesion fracture test 



Fracture properties and temperature 
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 DTT Test   Vialit Test – Cohesion  

Brittle 

Brittle 
Flow/Ductile 

Flow/Ductile 

This shift is just 
related to loading 
time/rate! Width is 
related to rate! 

Really a stiffness effect – needed to explain 
these brittle to ductile transitions. 
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Energy plots for DTT data 
   – Energy to failure vs. Modulus 

E(t) = 1MPa to 1000 MPa 

Normalization of 
ultimate of fracture 
properties via linear 
visco-elastic modulus. 
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 If using E(t) – previously observed flow/ductile to brittle 
range covered from about 1MPa to 1000 MPa 

 Note G*≈ E(t)/3 
 300 kPa to 300 MPa – 3.0x109  to 3x108 Pa 

 CA model fit works well in limited range 105 to 109 Pa 
 This range covers stiffness range above where we would 

describe fracture behavior 
We use the CA model to generate isochronal plot for 

stiffness in this range 
 
 

Range of stiffness needed 
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Rate of loading effects 

 Rate of loading 
effects range of 
results that will be 
obtained in 
temperature 
domain if 
properties are 
dependent upon 
stiffness as shown 
earlier. 

 Rate of any 
fracture test is 
key to 
understanding 
behavior. 
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Loading rate versus temperature range, 
assessed from DSR data 

 The loading rate in 
Vialet and DTT can 
be used to 
generate 
isochronal plot for 
each test 

 A fast rate will give 
a shorter 
temperature range 
since 
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Fracture properties and temperature 
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This shift is just related to 
loading time/rate! Width is 
related to rate! Really a stiffness effect – needed to explain these brittle to 

ductile transitions. 
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Fracture Properties from Double Notched Test 
in Tension 

Strain: ε = δ L / L 
                     

L

 

Evaluation of Elastic, Plastic, and VE 
Fracture Mechanics Parameters 



Ranking depends on methodology 
  Ranking at equi-toughness  
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Use of Tg as reference temperature when 
analyzing fracture mechanics parameters 
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Equivalent to using 
Stiffness as reference 

or normalization 
temperature! 



Item 3 

 Temperature window – of interest depends on the rate 
of loading 
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How do we use all of this ….. 

 Helps us to interpret data, test condition, loading 
configurations, etc. 

 Need to assess existing and new methods in rational 
manner 

 Time-temperature dependency can be determined from 
simplified testing – beyond scope of today’s 
presentation – rheology 101 for March 2016? 
 Time-temperature algorithm is uniformly valid for rheology 

and ultimate properties 
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Item 3 – Importance of rheological behavior 
when evaluating ultimate properties 

 Rheological type 
 Linear visco-elastic behavior relates to ultimate properties 

whether they be fatigue, “cracking” strength, or whatever 
the property of interest may be 

 Can use this in analysis 
 Can use this in testing for reasonableness 

 When comparing ultimate properties need to do 
comparison at equi-stiffness temperature 
 Corollary: In specification test must obtain parameters 

service temperature at rate consistent with service 
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 Require that we determine stiffness characteristics 
accurately for range that effects cracking 

 Model stiffness master curve with BBR, DSR and CA fit 
with Kaelble 
 Possible from standard data that is collected 

 Food for thought…… 
When writing a specification specify ultimate properties at 

temperature and loading rate consistent with service 

Items 1 to 3 
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A couple of thoughts on analysis 

 We have more data in data sets than we use 
 R-value captured in all SHRP data 
 Many ways we can estimate 

 Extrapolation vs. interpolation 
 Specification parameters – property driven – will they 

be the same in different climates? 
 Rate of loading effects…. 
 Consideration of stiffness helps us to understand tests 
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Summary 

1.Stiffness – G*, E(t) is a vital element in specification-interpretation of 
ultimate properties 
1. When conducting research carefully consider the relationship 

between loading rate-temperature-stiffness 
2. Ultimate binder property at single temperature-loading rate is a 

poor candidate for predicting performance 
2.A transition between brittle and flow-type behavior occurs at 

approximately 10-30 MPa   
3.The rheological type is of key importance to understand ultimate 

properties/performance  
4.Consequences: 

1. Data collection – only use G* >1 x 105 MPa in model fits 
  Sufficient to describing brittle to ductile fracture, etc. 
1. Capture data in range of stiffness to cover transitions! 
2. Linear VE time-temperature dependency of binder also relates to 

cracking of mixes – thermal, fatigue, durability, etc. 
 Dependent upon shape and position of master curve stiffness 
and relaxation properties 
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